Three-dimensional profilometry based on shift estimation of projected fringe patterns.

نویسندگان

  • Yingsong Hu
  • Jiangtao Xi
  • Enbang Li
  • Joe Chicharo
  • Zongkai Yang
چکیده

This paper presents a new approach to fringe pattern profilometry. In this paper, a generalized model describing the relationship between the projected fringe pattern and the deformed fringe pattern is derived, in which the projected fringe pattern can be arbitrary rather than being limited to being sinusoidal, as are those for the conventional approaches. Based on this model, what is believed to be a new approach is proposed to reconstruct the three-dimensional object surface by estimating the shift between the projected and deformed fringe patterns. Additionally, theoretical analysis, computer simulation, and experimental results are presented, which show how the proposed approach can significantly improve the measurement accuracy, especially when the fringe patterns are distorted by unknown factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional measurement of object surfaces with complex shape and color distribution based on projection of color fringe patterns.

A challenging issue associated with three-dimensional (3D) fringe patterns profilometry (FPP) is the unwrapping of phase maps resulting from color object surfaces. This paper proposes a new color-projection-based 3D FPP, making use of the three primary color channels [i.e., red, green, and blue (RGB)] associated with digital projectors. One channel (e.g., red) is used for projecting sinusoidal ...

متن کامل

A multiple wavelength unwrapping algorithm for digital fringe profilometry based on spatial shift estimation

In this paper, a new approach is presented for solving the problem of spatial shift wrapping associated with Spatial Shift Estimation (SSE)-based Fringe Pattern Profilometry (FPP). The problem arises as the result of fringe reuse (that is, fringes periodic light intensity variance), and the spatial shift can only be identified without ambiguity with the range of a fringe width. It is demonstrat...

متن کامل

Digital fringe profilometry based on triangular fringe patterns and spatial shift estimation

In this paper, we present a new approach for the 3D measurement using digital fringe projection. Instead of sinusoidal fringe patterns and the traditional phase shift detection, the proposed technique makes use of triangular patterns and the spatial shift estimation for extract the 3D shape. The proposed technique is advantageous not only by improved immunization to nonlinear distortion associa...

متن کامل

3D shape measurement based on projection of triangular patterns of two selected frequencies.

In this paper, a temporal shift unwrapping technique is presented for solving the problem of shift wrapping associated with spatial shift estimation (SSE)-based fringe pattern profilometry (FPP). Based on this technique, a novel 3D shape measurement method is proposed, where triangular patterns of two different spatial frequencies are projected. The patterns of the higher frequency are used to ...

متن کامل

Discrete cosine transform-based shift estimation for fringe pattern profilometry using a generalized analysis model.

What is believed to be a new analysis algorithm to carry out profile measurement with low computational complexity and less noise sensitivity is presented. First, a discrete cosine transform (DCT)-based representation method is introduced to express the height distribution of a 3D surface. Then a novel shift estimation algorithm, called the DCT-based shift estimation (DCT-SE), is presented to r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 45 4  شماره 

صفحات  -

تاریخ انتشار 2006